Quaternionic spherical harmonics and a sharp multiplier theorem on quaternionic spheres
نویسندگان
چکیده
منابع مشابه
Mercer’s Theorem for Quaternionic Kernels
the series being uniformly and absolutely convergent in (x,y). A number of generalisations to Mercer’s theorem may be found in the literature, in particular dealing with kernels K : Y × Y → C for various choices of Y . However there would appear to have been (to the best of the author’s knowledge) no attempts made to extend Mercer’s theorem to cover non-complex valued kernels. In the present pa...
متن کاملWillmore Spheres in Quaternionic Projective Space
The Willmore energy for Frenet curves in quaternionic projective space HP is the generalization of the Willmore functional for immersions into S. Critical points of the Willmore energy are called Willmore curves in HP. Using a Bäcklund transformation on Willmore curves, we generalize Bryant’s result on Willmore spheres in 3–space: a Willmore sphere in HP has integer Willmore energy, and is give...
متن کاملA rigidity theorem for quaternionic Kähler structures
We study the moduli space of quaternionic Kähler structures on a compact manifold of dimension 4n ≥ 12 from a point of view of Riemannian geometry, not twistor theory. Then we obtain a rigidity theorem for quaternionic Kähler structures of nonzero scalar curvature by observing the moduli space.
متن کاملQuaternionic Line-Sets and Quaternionic Kerdock Codes
When n is even, orthogonal spreads in an orthogonal vector space of type O-(2n 2,2) are used to construct line-sets of size (2nm1 + 1)2”-’ in W2”~’ all of whose angles are 90” or cos -1(2-(“-2)/2). These line-sets are then used to obtain quatemionic Kerdock Codes. These constructions are based on ideas used by Calderbank, Cameron, Kantor, and Seidel in real and complex spaces.
متن کاملQuaternionic Connections, Induced Holomorphic Structures and a Vanishing Theorem
We classify the holomorphic structures of the tangent vertical bundle Θ of the twistor fibration of a quaternionic manifold (M, Q) of dimension 4n ≥ 8. Using a Penrose transform we show that, when (M, Q) is compact and admits a compatible quaternionic-Kähler metric of negative scalar curvature, Θ admits no global non-trivial holomorphic sections with respect to any of its holomorphic structures...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Zeitschrift
سال: 2019
ISSN: 0025-5874,1432-1823
DOI: 10.1007/s00209-019-02313-w